Data fusion using Multiple Factor Analysis coupled with non-linear pattern recognition (fuzzy k-means): application to Chenin blanc

نویسندگان

چکیده

Patterns in data obtained from wine chemical and sensory evaluations are difficult to decipher using classical statistics. Coupling fusion with machine learning techniques could assist solving these issues lead new hypotheses. The current study investigated the applicability of pattern recognition approaches for oenological applications. A sample set 23 Chenin blanc wines made young (< 35 years) old (> vines were analysed (recently bottled (Year 1) after two years storage 2)). Sensory (sorting) (NMR: nuclear magnetic resonance HRMS: high-resolution mass spectrometry) collected. Multiple factor analysis (MFA) was used fusion. Cluster performed by agglomerative hierarchical clustering (AHC) fuzzy k-means. Optimal cluster conditions found both methods cophenetic coefficient assess confidence fit. Given large number variables, models complex. Inconsistent patterns observed when varying conditions, indicating high similarity between samples. Overall, k-means resolved better than AHC and, coupled fusion, improved interpretation complex data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

Fuzzy Analysis of Breast Cancer Disease using Fuzzy c-means and Pattern Recognition

Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. The automatic diagnosis of breast cancer is an important, real-world medical problem. In this article is introduced a new approach for diagnosis of breast cancer. The proposed approach uses Fuzzy c-means (FCM) algorithm and patter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: OENO One

سال: 2022

ISSN: ['2494-1271']

DOI: https://doi.org/10.20870/oeno-one.2022.56.3.5374